[bookmark: _Toc200966455][bookmark: _Toc200980164][bookmark: _Toc200983271][bookmark: _Toc202694786][bookmark: _Toc202698805][bookmark: _Toc286599657][bookmark: _Toc288045557][bookmark: _Toc293994294][bookmark: _Toc332888969]Redundancy
[bookmark: _Toc200966456][bookmark: _Toc200980165][bookmark: _Toc200983272][bookmark: _Toc202694787][bookmark: _Toc202698806][bookmark: _Toc286599658][bookmark: _Toc288045558][bookmark: _Toc293994295][bookmark: _Toc332888970]Redundancy overview
Redundancy in OPC UA ensures that both Clients and Server can be redundant. OPC UA does not provide redundancy; it provides the data structures and services by which redundancy may be achieved in a standardized manner.
[bookmark: _Toc200966457][bookmark: _Toc200980166][bookmark: _Toc200983273][bookmark: _Toc202694788][bookmark: _Toc202698807][bookmark: _Toc286599659][bookmark: _Toc288045559][bookmark: _Toc293994296][bookmark: _Toc332888971]Server redundancy overview
General
Server redundancy comes in two modes, transparent and non-transparent. By definition, in transparent redundancy the failover of Server responsibilities from one Server to another is transparent to the Client: the Client does not care or even know that failover has occurred; the Client does not need to do anything at all to keep data flowing. In contrast, non-transparent failover requires some activity on the part of the Client.
The ServerRedundancy Object defined in Part 5 indicates the mode supported by the Server. The ServerRedundancyType ObjectType and its subtypes TransparentRedundancyType and NonTransparentRedundancyType defined in Part 5 specify information for the supported redundancy mode.
The two areas where redundancy creates specific needs are in keeping the Server and Client information synchronised across Servers, and in controlling the failover of data flow from one Server to another.
Independent of the used redundancy mode it is expected that all Servers in the redundant set have an identical address space including identical NodeIds and the identical logic for setting the service level.	Comment by Nathan Pocock: Does NOT say “required”.
[bookmark: _Ref406659884]Transparent redundancy
For transparent redundancy, all that OPC UA provides is the data structures to allow the Client to identify which Servers are in the redundant set, what the service level of each Server is and which Server is currently responsible for the Client Session. This information is specified in TransparentRedundancyType ObjectType defined in Part 5.
All OPC UA interactions within a given session shall be supported by one Server and the Client is able to identify which Server that is, allowing a complete audit trail for the data. It is the responsibility of the Servers to ensure that information is synchronised between the Servers. A functional Server will take over the Session and Subscriptions from the failed Server. Failover may require a transport layer reconnect of the Client but the Endpoint URL of the Server shall not change. See 6.5 for more details on re-establishing connections.
Figure 25 shows a typical transparent redundancy setup.

[bookmark: _Ref136924211][bookmark: _Toc136761213][bookmark: _Toc200966568][bookmark: _Toc200980277][bookmark: _Toc200983384][bookmark: _Toc202694899][bookmark: _Toc202698918][bookmark: _Toc286599332][bookmark: _Toc288045670][bookmark: _Toc293994408][bookmark: _Toc332889092]Figure 125 – Transparent Redundancy setup
Non-transparent redundancy
Overview
For non-transparent redundancy, OPC UA provides the data structures to allow the Client to identify what Servers are available in the redundant set and also Server information which tells the Client what modes of failover the Server supports. This information allows the Client to determine what actions it may need to take in order to accomplish failover. This information is specified in NonTransparentRedundancyType ObjectType defined in Part 5.
Figure 26 shows a typical non-transparent redundancy setup.

[bookmark: _Ref136753659][bookmark: _Toc200966569][bookmark: _Toc200980278][bookmark: _Toc200983385][bookmark: _Toc202694900][bookmark: _Toc202698919][bookmark: _Toc286599333][bookmark: _Toc288045671][bookmark: _Toc293994409][bookmark: _Toc332889093]Figure 226 – Non-Transparent Redundancy setup
For non-transparent redundancy the Server has additional concepts of Cold, Warm, Hot and HotPlusMirrored failover modes. The failover mode provides information about the failover capabilities the Server supports and allows a Client to determine the available failover actions described in Table 102.
All Servers in a redundant set shall have time synchronization.

Cold
From the Servers Perspective a cold system is where only 1 Server can be active at a time. This may mean that redundant Servers are unavailable (not powered up) or are available but not running (PC is running, but application is not started).
From the Clients Perspective a cold system is where the Client can only connect to 1 Server at a time. When the Client loses connectivity with the active Server it will attempt a connection to the redundant Server(s) which may or may not be available. In this situation the Client may need to wait for the redundant Server to become available and then creates Subscriptions and MonitoredItems and activates publishing.
Note: There may be a loss of data from the time the connection to the active Server is interrupted until the time the Client gets Publish Responses from the backup Server.
Cold failovers are for Servers where only one Server can be active at a time. The Client can only connect to one of the Servers in the redundant set.	Comment by Nathan Pocock: How can a Client LAUNCH the backup Server?
Warm
From the Servers perspective a Warm system is where failovers are for Servers where the backup Servers can be active, but cannot connect to actual data points (typically, a system where the underlying devices are limited to a single connection). Underlying devices, such as PLCs, may have limited resources that permit a single Server connection. Therefore, only a single Server will be able to consume data. The ServiceLevel Variable defined in Part 5 indicates the ability of the Server to provide its data to the Client.
The From the Clients perspective a Warm system is where the Client shall should connect to 1 or more Servers in the redundant set primarily to monitor the Service leveluse the Server with the highest service level. A Client can connect and create Subscriptions and MonitoredItems on more than one Server. Sampling and publishing can only be activated on one Server. This one Server can be found by reading the ServiceLevel Variable from all Servers. The Server with the highest ServiceLevel is used. For failover the Client activates sampling and publishing on the Server with the highest ServiceLevel.
Note: There may be a loss of data from the time the connection to the active Server is interrupted until the time the Client gets Publish Responses from the backup Server.
 The designation of the active Server is vendor specific.
Hot
Hot failovers are for Servers where more than one Server can be active and fully operational. The ServiceLevel Variable defined in Part 5 should be used by the Client to find the Servers with the highest service level to achieve load balancing.From the Servers perspective a Hot system is where all Servers are powered-on and are up and running. In scenarios where Servers acquire data from a downstream device, such as a PLC, then one or more Servers are actively connected to the downstream device(s) in parallel. These Servers have minimal knowledge of the other Servers in their group and are independently functioning. When a Server fails or encounters a serious problem then its ServiceLevel drops. On recovery, the Server returns to the Redundant set with an appropriate ServiceLevel to indicate that it is a normal backup/redundant Server.
From the Clients perspective a Hot system is where the Client should connect to one or more Servers in the redundant set and to subscribe to the ServiceLevel variable (defined in Part 5) to find the highest service level to achieve load balancing; this means that Clients should issue commands (such as Browse, Read, Write, etc.) to the Server with the most availability. Subscription related activities will need to be invoked for each connected Server. Clients have the following choices for implementing subscription behaviour in a Hot system:
a. Client connects to multiple Servers and establishes subscription(s) in each where only one is Reporting; the others are Sampling only. The Client should setup the queue size for the MonitoredItems such that it can buffer all changes during the failover time. The failover time is the time between the connection interruption and the time the Client gets Publish Responses from the backup Server. On a fail-over the Client must enable Reporting on the next Server with the highest availability.
b. Client connects to multiple Servers and establishes subscription(s) in each where all subscriptions are Reporting. The Client is responsible for handling/processing multiple subscription streams concurrently.
Clients are not expected to automatically switch over to a Server that has recovered from a failure, but the Client should establish a connection to it.

HotPlusMirrored
From the Servers perspective a HotPlusMirrored system is where failovers are for Servers that are mirroring their internal states to all Servers in the redundant set and more than one Server can be active and fully operational. Mirroring state minimally includes Sessions, Subscriptions, registered Nodes, ContinuationPoints, sequence numbers, and sent Notifications. This allows Clients to fail over without creating a new context for communication. The ServiceLevel Variable defined in Part 5 should be used by the Client to find the Servers with the highest service level to achieve load balancing. This failover mode is similar to the transparent redundancy. The advantage is that the Client has full control over selecting the Server. The disadvantage is that the Client needs to be able to handle failovers.

From the Clients perspective a HotPlusMirrored system is where a Client only connects to one Server in the redundancy set because the Server will share this session/state information with the other Servers. In order to validate the capability to connect to other redundant Servers it is allowed to create Sessions with other Servers and maintain the open connections by reading the ServiceLevel. A Client shall not create Subscriptions on the backup Servers for status monitoringperiodically (to prevent excessive load on the Servers). This mode allows Clients to fail over without creating a new context for communication. On a fail-over the Client will simply create a new SecureChannel on an alternate Server and then call ActivateSession; all Client activities (browsing, subscriptions, history reads, etc.) will then resume.
This failover mode is similar to the transparent redundancy (see 1.1.2.2 Transparent redundancy). The advantage is that the Client has full control over selecting the Server. The disadvantage is that the Client needs to be able to handle failovers.
To enable clients to connect to all Servers in the list, each Server in the list shall provide the ApplicationDescription for all Servers in the redundant set through the FindServers Service. This information is needed by the Client to translate the ServerUri into information needed to connect to the other Servers in the redundant set. Therefore a Client needs to know only one of the redundant Servers to find the other Servers based on the provided information.
Table 102 defines the list of failover actions.Client Behaviours
Each Server maintains a list of ServerUris for all redundant Servers in the redundant set. The list is provided together with the failover mode in the ServerRedundancy Object defined in Part 5. To enable clients to connect to all Servers in the list, each Server in the list shall provide the ApplicationDescription for all Servers in the redundant set through the FindServers Service. This information is needed by the Client to translate the ServerUri into information needed to connect to the other Servers in the redundant set. Therefore a Client needs to know only one of the redundant Servers to find the other Servers based on the provided information.
Table 102 defines a list of Client actions for initial connections and failovers. In the case of failover modes Cold, Warm, and Hot, a Client can always use a lesser failover mode than the Server supports. For example, the Server supports Hot failover mode and the Client can use the Warm actions. In the case of failover mode HotPlusMirrored, the Client shall not use a lesser mode as it would generate unnecessary load on the Servers.

[bookmark: _Ref136754145][bookmark: _Ref136754128][bookmark: _Toc200966687][bookmark: _Toc200980397][bookmark: _Toc200983503][bookmark: _Toc202695018][bookmark: _Toc202699037][bookmark: _Toc286599451][bookmark: _Toc293994527][bookmark: _Toc332889212]Table 102 – Redundancy failover actions
	Failover mode and Client options
	Cold
	Warm
	Hot (a1)
	Hot (b2)
	HotPlusMirrored

	On initial connection in addition to actions on active server:
	
	
	
	
	

		Connect to more than one OPC UA Server.
	
	X
	X
	X
	Optional for status check

		Creating Subscriptions and adding monitored items.
	
	X
	X
	X
	

		Activating sampling on the Subscriptions.
	
	
	X
	X
	

		Activate publishing.
	
	
	
	X
	

	At Failover:
	
	
	
	
	

		CreateSecureChannel to backup OPC UA Server
	X
	
	
	
	X

		CreateSession on backup OPC UA Server
	X
	
	
	
	

		ActivateSession on backup OPC UA Server
	X
	
	
	
	X

		Creating Subscriptions and adding monitored items.
	X
	
	
	
	

		Activating sampling on the Subscriptions.
	X
	X
	
	
	

		Activate publishing.
	X
	X
	X
	
	

A Client connected to a Cold failover redundant set can only connect to one Server.
A Client connected to a Warm failover redundant set can connect and create Subscriptions and MonitoredItems on more than one Server. Sampling and publishing can only be activated on one Server. This one Server can be found by reading the ServiceLevel Variable from all Servers. The Server with the highest ServiceLevel is used. For failover the Client activates sampling and publishing on the Server with the highest ServiceLevel. There is a loss of data from the time the connection to the active Server is interrupted until the time the Client gets Publish Responses from the backup Server.
A Client connected to a Hot failover redundant set has two options to ensure that there is no loss of data in a failover scenario.
· Hot (1)
The Client creates MonitoredItems and is sampling on more than one Server but activates publishing only on the Server with the highest ServiceLevel.
· Hot (2)
The Client receives the same information from more than one Server by sampling and publishing on more than one Server. This mode ensures that there is no interruption in the data stream and no data loss but the Client should ensure that it detects duplicate data and it must process two data streams.
A Client connected to a HotPlusMirrored failover redundant set can assume that the Servers are mirroring their state, including connection information and queues. Therefore the Client just connects to one Server and in case of a failover re-establishes its connection using a different Server. Failover works like described in 6.5. The only difference is that the new SecureChannel is created on another Server with the highest ServiceLevel. Sessions and Subscriptions can be reused since they are mirrored to all Servers.
A Client can always use a lesser mode than the server supports. For example, the Server supports Hot failover mode and the Client can use the Warm actions. In the case of failover mode HotPlusMirrored, the Client shall not use a lesser mode as it would generate unnecessary load on the Servers.
Transparent redundancy via proxy
A vendor can use the non-transparent redundancy features to create a Server proxy running on the Client machine to provide transparent redundancy to the client. This reduces the amount of functionality that shall be designed into the Client and to enable simpler Clients to take advantage of non-transparent redundancy. The Server proxy simply duplicates Subscriptions and modifications to Subscriptions, by passing the calls on to both Servers, but only enabling publishing and sampling on one Server. When the proxy detects a failure, it enables publishing and/or sampling on the backup Server, just as the Client would if it were a redundancy-aware Client.
Figure 27 shows the Server proxy used to provide transparent redundancy.

[bookmark: _Ref136754830][bookmark: _Toc200966570][bookmark: _Toc200980279][bookmark: _Toc200983386][bookmark: _Toc202694901][bookmark: _Toc202698920][bookmark: _Toc286599334][bookmark: _Toc288045672][bookmark: _Toc293994410][bookmark: _Toc332889094]Figure 327 – Server proxy for transparent redundancy
[bookmark: _Toc200966458][bookmark: _Toc200980167][bookmark: _Toc200983274][bookmark: _Toc202694789][bookmark: _Toc202698808][bookmark: _Toc286599660][bookmark: _Toc288045560][bookmark: _Toc293994297][bookmark: _Toc332888972]Client redundancy
Client redundancy is supported in OPC UA by the TransferSubscriptions call and by exposing Client information in the Server information structures. Since Subscription lifetime is not tied to the Session in which it was created, backup Clients can monitor the active Client’s Session with the Server, just as they would monitor any other data variable. If the active Client ceases to be active, the Server shall send a data update to any Client which has that variable monitored. Upon receiving such notification, a backup Client would then instruct the Server to transfer the Subscriptions to its own session. If the Subscription is crafted carefully, with sufficient resources to buffer data during the change-over, there need be no data loss from a Client failover.
OPC UA does not provide a standardized mechanism for conveying the SessionId and SubscriptionIds from the active Client to the backup Clients, but as long as the backup Clients know the Client name of the active Client, this information is readily available using the SessionDiagnostics and SubscriptionDiagnostics portions of the ServerDiagnostics data.

[bookmark: _Toc332888973]Network redundancyredundancy
Overview
Redundant networks can be used with OPC UA in either transparent or non-transparent redundancy.
Network redundancy can be combined with Server and Client redundancy.
Transparent
In the transparent network use-case a single Server Endpoint can be reached through different network paths. This case is completely handled by the network infrastructure. The selected network path and failover are transparent to the Client and the Server.

Figure 4 Transparent Network Redundancy

Examples:
· A physical appliance/device such as a router or gateway which automatically changes the network routing to maintain communications.
· A virtual adapter which automatically changes the network adapter to maintain communications.
Non-Transparent
In the non-transparent transparent network use-case the Server provides different Endpoints for the different network paths. This requires both the Server and the Client to support multiple network connections. In this case the Client is responsible for selecting the Endpoint and for failover. For failover the normal reconnect scenario described in XXXXXn 6.5 can be used. Only the SecureChannel is created with another Endpoint. Sessions and Subscriptions can be reused.

Figure 5 Non-Transparent Network Redundancy

The information about the different network paths is specified in NonTransparentRedundancyType ObjectType defined in Part 5.
Network redundancy can be combined with server redundancy.
[bookmark: _Toc293994298][bookmark: _Ref303088442][bookmark: _Ref303088449][bookmark: _Ref303107746][bookmark: _Ref321825474][bookmark: _Ref323077543][bookmark: _Ref329099418][bookmark: _Toc332888974]Redundancy Considerations
There are important considerations for a redundant system, particularly for synchronization:
· EventIds:	Each UA Server in a HotPlusMirrored redundant set will need to synchronize EventIds to prevent a Client from mistakenly processing the same event multiple times simply because the EventIds are different. This is very important for Alarms & Conditions. For Cold, Warm, and Hot redundancy sets Clients must be able to handle EventIds that are not synchronized. Following any fail-over the Client must call Refresh.
· Timestamp (Source/Server):	If a Server is exposing data from a downstream device (PLC, DCS etc.) then the SourceTimestamp and ServerTimestamp reported by all redundant Servers should match as closely as possible. Clients should favor the use of the SourceTimestamp.
· ContinuationPoints:	Following a fail-over Clients must assume that any ContinuationPoints have been lost except in a HotPlusMirrored redundancy set.
· Methods:	For Clients invoking Methods in Servers, following a failover Clients must determine the state of any method invocations to verify the method was processed completely.
·
·
·
Manually Forcing Failover
A user may need to force a failover on the Client, perhaps to apply patches to a Server etc.
The Server.RedundancyServer should expose a method called “OverrideServiceLevel” that:
· Can have security applied to it to restrict user access
Clients must not connect to a Server when its Server.ServiceLevel property is set to 0.
Signature
OverrideServiceLevel(
	 [in] Bool serviceLevelOverride
);

	Argument
	Description

	serviceOverride
	 Takes a BOOLEAN argument:
· True: Sets’ the Server.ServiceLevel property to 0. [within the range defined in 2.1]
· False: This Server can be brought back into the redundancy rotation (perhaps as primary, or as a backup) and allows the Server to set Server.ServiceLevel property to an appropriate value. [within the range defined in 2.1

Method Result Codes (defined in Call Service)
	Result Code
	Description

	Bad_UserAccessDenied
	The current user is not authorized to invoke the method

	
	

Table 96 specifies the AddressSpace representation for the OverrideServiceLevel Method.
[bookmark: _Ref174163279][bookmark: _Toc174850058][bookmark: _Toc216659742][bookmark: _Toc217186505][bookmark: _Toc232922800][bookmark: _Toc232927536][bookmark: _Toc287308284][bookmark: _Toc330281384]Table 96 – OverrideServiceLevel Method AddressSpace Definition
	Attribute
	Value

	BrowseName
	OverrideServiceLevel

	References
	NodeClass
	BrowseName
	DataType
	TypeDefinition
	ModellingRule

	HasProperty
	Variable
	InputArguments
	Argument[]
	PropertyType
	Mandatory

Re-establishing connections
After a Client establishes a connection to a Server and creates a Subscription, the Client monitors the connection status. Figure 28 shows the steps to connect a Client to a Server and the general logic for reconnect handling. Not all possible error scenarios are covered.
The preferred mechanism for a Client to monitor the connection status is through the keep-alive of the Subscription. A Client should subscribe for the State Variable in the ServerStatus to detect shutdown or other failure states. If no Subscription is created or the Server does not support Subscriptions, the connection can be monitored by periodically reading the State Variable.

[bookmark: _Ref303812115][bookmark: _Toc332889095]Figure 628 – Reconnect Sequence
When a Client loses the connection to the Server, the goal is to reconnect without losing information. To do this the Client shall re-establish the connection by creating a new SecureChannel and activating the Session with the Service ActivateSession. This assigns the new SecureChannel to the existing Session and allows the Client to reuse the Session and Subscriptions in the Server. This will result in the Client receiving data and event Notifications without losing information provided the queues in the MonitoredItems do not overflow.
The Client shall only create a new Session if ActivateSession fails. TransferSubscriptions is used to transfer the Subscription to the new Session. If TransferSubscriptions fails, the Client needs to create a new Subscription.
When the connection is lost, Publish responses may have been sent but not received by the Client.
After re-establishing the connection the Client shall call Republish in a loop, starting with the next expected sequence number and incrementing the sequence number until the Server returns the status Bad_MessageNotAvailable. After receiving this status, the Client shall start sending Publish requests with the normal Publish handling. This sequence ensures that the lost NotificationMessages queued in the Server are not overwritten by new Publish responses.
If the Client detects missing sequence numbers in the Publish and is not able to get the lost NotificationMessages through Republish, the Client should read the values of all data MonitoredItems to make sure the Client has the latest values for all MonitoredItems.
Independent of the detailed recovery strategy, the Client should make sure that it does not overwrite newer data in the Client with older values provided through Republish.
If the Republish returns Bad_SubscriptionIdInvalid, then the Client needs to create a new Subscription.

Load Balancing
TODO
Part 5 Modifications
[bookmark: _Ref403033861]6.3.1
Original text: “ServiceLevel describes the ability of the Server to provide its data to the client. The value range is from 0 to 255, where 0 indicates the worst and 255 indicates the best. The concrete values are vendor-specific. The intent is to provide the clients an indication of availability among redundant Servers.”
Proposed text: “0-10 = do not use; 240+ = healthy/usable. More commentary needed; perhaps split by redundancy mode; provide use-cases etc.”
6.3.9
Original text: “RedundancySupport is inherited from the ServerRedundancyType. It shall be set to COLD_1, WARM_1. HOT_3 or HOT_AND_MIRRORED_5 for all instances of the NonTransparentRedundancyType. It defines the redundancy support provided by the Server. The Client is allowed to access the redundant Server only as described there, however, ”hot” switchover implies the support of “warm” switchover and “warm” switchover implies the support of “cold” switchover. Support for HotAndMirrored redundancy implies the support of “hot” switchover, however, for Servers supporting HotandMirrored redundancy it is strongly recommended that Clients use the HotAndMirrored mechanisms.”	Comment by Nathan Pocock [2]: 	Comment by Nathan Pocock [2]: Needs clarification from the Client perspective.
Proposed text: “”
oleObject1.bin

Client and process info

Transparent Server

Server 2 (backup)

Client and process info

Server 1 (active)

Client

image2.emf

Server 1 (active)

Client and process info

Server 2 (backup)

Client and process info

Client

 Redundancy Set

oleObject2.bin

Redundancy Set

Client

Client and process info

Server 1 (active)

Client and process info

Server 2 (backup)

image3.emf

Server 1

 Server 2

Server proxy

 R edundancy Set

Client

oleObject3.bin

 Redundancy Set

Server

 proxy

Client

Server 1

Server 2

image4.emf
Server

Client

Microsoft_Visio_Drawing1.vsdx
Server
LAN 1

Client
LAN 2

image5.emf
Server

Client

Microsoft_Visio_Drawing2.vsdx
Server
LAN 1

Client
LAN 2

image6.emf
Connection

Status

CreateSesucreChannel

CreateSession

ActivateSession

Startup

Monitor Connection

OK Error

CreateSesucreChannel

ActivateSession

Good

Republish

Service

Result

Good

Good

Bad_SubscriptionIdInvalid

Start Publish processing

Bad_MessageNotAvailable

CreateSession

ActivateSession

Transfer

Subscription

Bad

Service

Result

Good

Create Subscription

Bad

Bad

Service

Result

Service

Result

Microsoft_Visio_2003-2010_Drawing1.vsd
�

�

�

Connection
Status

CreateSesucreChannel
CreateSession
ActivateSession

Startup

Bad

Service
Result

Start Publish processing

Monitor Connection

OK

Error

CreateSesucreChannel

ActivateSession

Good

Service
Result

Republish

Service
Result

Good

Good

Bad_SubscriptionIdInvalid

Bad_MessageNotAvailable

CreateSession
ActivateSession

Transfer Subscription

Bad

Service
Result

Good

Create Subscription

Bad

image1.wmf

Transparent Server

Server

1 (active)

Client and process info

Server 2 (backup)

Client and process info

Client

1.1

Redundancy

1.1.1

Redundancy overview

Redundancy in OPC UA ensures that both Clients and Server can be redundant. OPC UA does

not provide redundancy; it provides the data structures and services by which redundancy may be

achieved in a standardized manner.

1.1.2

Server redundancy overview

1.1.2.1

General

Server redundancy comes in two modes, transparent and non

-

transparent. By definition, in

transparent redundancy the failover of

Server

responsibilities from one

Server

to another is

transparent to the

Client

: the

Client

d

oes not care or even know that failover has occurred; the

Client

does not need to do anything at all to keep data flowing. In contrast, non

-

transparent failover

requires some activity on the part of the

Client

.

The

ServerRedundancy Object

defined in

Part

5

indicates the mode supported by the

Server

. The

ServerRedundancyType

ObjectType and its subtypes

TransparentRedundancyType

and

NonTransparentRedundancyType

defin

ed in

Part

5

specify

information for the supported

redundancy mode.

The two areas where redundancy creates specific needs are in keeping the

Server

and

Client

inf

ormation synchronised across

Servers

, and in controlling the failover of data flow from one

Server

to another.

Independent of the used redundancy mode it is

expected

that all

Servers

in the redundant set have

an identical address space including identic

al

NodeIds

and the identical logic for setting the service

level.

1.1.2.2

Transparent redundancy

For transparent redundancy, all that OPC UA provides is the data structures to allow the

Client

to

identify which

Servers

are in the redundant set, what the service le

vel of each

Server

is and which

Server

is currently responsible for the

Client

Session

. Th

is information is specified in

TransparentRedundancyType ObjectType

defined in

Part

5

.

All OPC UA interactions within a given session shall be supported by one

Server

and the

Client

is

able to identify which

Server

that is, allowing a complete audit trail for the data. It is the

responsibility of the

Servers

to ensure that information is synchronised between the

Servers

.

A

functional

Server

will take over the

Session

and

Subscriptions

from the failed

Server

.

Failover may

require a transport layer reconnect of the

Client

but the

Endpoint

URL of the

Server

shal

l not

change.

See

6.5

for more details on re

-

establishing connections.

Figure

25

shows a typical transparent redundancy setup.

1.1 Redundancy 1.1.1 Redundancy overview Redundancy in OPC UA ensures that both Clients and Server can be redundant. OPC UA does not provide redundancy; it provides the data structures and services by which redundancy may be achieved in a standardized manner. 1.1.2 Server redundancy overview 1.1.2.1 General Server redundancy comes in two modes, transparent and non - transparent. By definition, in transparent redundancy the failover of Server responsibilities from one Server to another is transparent to the Client : the Client d oes not care or even know that failover has occurred; the Client does not need to do anything at all to keep data flowing. In contrast, non - transparent failover requires some activity on the part of the Client . The ServerRedundancy Object defined in Part 5 indicates the mode supported by the Server . The ServerRedundancyType ObjectType and its subtypes TransparentRedundancyType and NonTransparentRedundancyType defin ed in Part 5 specify information for the supported redundancy mode. The two areas where redundancy creates specific needs are in keeping the Server and Client inf ormation synchronised across Servers , and in controlling the failover of data flow from one Server to another. Independent of the used redundancy mode it is expected that all Servers in the redundant set have an identical address space including identic al NodeIds and the identical logic for setting the service level. 1.1.2.2 Transparent redundancy For transparent redundancy, all that OPC UA provides is the data structures to allow the Client to identify which Servers are in the redundant set, what the service le vel of each Server is and which Server is currently responsible for the Client Session . Th is information is specified in TransparentRedundancyType ObjectType defined in Part 5 . All OPC UA interactions within a given session shall be supported by one Server and the Client is able to identify which Server that is, allowing a complete audit trail for the data. It is the responsibility of the Servers to ensure that information is synchronised between the Servers . A functional Server will take over the Session and Subscriptions from the failed Server . Failover may require a transport layer reconnect of the Client but the Endpoint URL of the Server shal l not change. See 6.5 for more details on re - establishing connections. Figure 25 shows a typical transparent redundancy setup.

