Draft 1.04	2	OPC Unified Architecture, Amendment X

OPC Unified Architecture, Amendment X	1	Draft 1.04

[bookmark: _Toc135501310]

OPC Unified Architecture
Specification
AMENDMENT X:
ExtendedTranslateBrowsePathsToNodeIds
Draft 1.04.01
July 04, 2018

	Specification Type:
	Industry Standard Specification
	Comments:
	Report or view errata: http://www.opcfoundation.org/errata

	
	
	
	

	Title:
	OPC Unified Architecture

Amendment X
ExtendedTranslateBrowsePathsToNodeIds
	Date:
	July 04, 2018

	
	
	
	

	Version:
	Draft 1.04
	Software:
	MS-Word

	
	
	Source:
	OPC UA Amendment X Extended TranslateBrowsePathsToNdodeIds Draft 1.04.01.docx

	
	
	
	

	Author:
	OPC Foundation
	Status:
	Draft

	
	
	
	

OPC FOUNDATION

UNIFIED ARCHITECTURE –

[bookmark: B_Toc306781274][bookmark: _Toc338050597][bookmark: _Toc68936398][bookmark: _Toc138504166][bookmark: _Toc198716771][bookmark: _Toc330281518]FOREWORD
This specification is the specification for developers of OPC UA applications. The specification is a result of an analysis and design process to develop a standard interface to facilitate the development of applications by multiple vendors that shall inter-operate seamlessly together.
Copyright © 2006-2018, OPC Foundation, Inc.
[bookmark: _Toc138504167][bookmark: _Toc198716772][bookmark: _Toc330281519]AGREEMENT OF USE
COPYRIGHT RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.
OPC Foundation members and non-members are prohibited from copying and redistributing this specification. All copies must be obtained on an individual basis, directly from the OPC Foundation Web site
HTUhttp://www.opcfoundation.orgUTH.
PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OPC specifications may require use of an invention covered by patent rights. OPC shall not be responsible for identifying patents for which a license may be required by any OPC specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its attention. OPC specifications are prospective and advisory only. Prospective users are responsible for protecting themselves against liability for infringement of patents.
WARRANTY AND LIABILITY DISCLAIMERS
WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS OR MISPRINTS. THE OPC FOUDATION MAKES NO WARRANTY OF ANY KIND, EXPRESSED OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OPC FOUNDATION BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
The entire risk as to the quality and performance of software developed using this specification is borne by you.
RESTRICTED RIGHTS LEGEND
This Specification is provided with Restricted Rights. Use, duplication or disclosure by the U.S. government is subject to restrictions as set forth in (a) this Agreement pursuant to DFARs 227.7202-3(a); (b) subparagraph (c)(1)(i) of the Rights in Technical Data and Computer Software clause at DFARs 252.227-7013; or (c) the Commercial Computer Software Restricted Rights clause at FAR 52.227-19 subdivision (c)(1) and (2), as applicable. Contractor / manufacturer are the OPC Foundation,. 16101 N. 82nd Street, Suite 3B, Scottsdale, AZ, 85260-1830
COMPLIANCE
The OPC Foundation shall at all times be the sole entity that may authorize developers, suppliers and sellers of hardware and software to use certification marks, trademarks or other special designations to indicate compliance with these materials. Products developed using this specification may claim compliance or conformance with this specification if and only if the software satisfactorily meets the certification requirements set by the OPC Foundation. Products that do not meet these requirements may claim only that the product was based on this specification and must not claim compliance or conformance with this specification.
TRADEMARKS
Most computer and software brand names have trademarks or registered trademarks. The individual trademarks have not been listed here.
GENERAL PROVISIONS
Should any provision of this Agreement be held to be void, invalid, unenforceable or illegal by a court, the validity and enforceability of the other provisions shall not be affected thereby.
This Agreement shall be governed by and construed under the laws of the State of Minnesota, excluding its choice or law rules.
This Agreement embodies the entire understanding between the parties with respect to, and supersedes any prior understanding or agreement (oral or written) relating to, this specification.
ISSUE REPORTING
The OPC Foundation strives to maintain the highest quality standards for its published specifications, hence they undergo constant review and refinement. Readers are encouraged to report any issues and view any existing errata here: HTUhttp://www.opcfoundation.org/errataUTH

[bookmark: _Toc329699254][bookmark: _Toc330281520]
Revision 1.04 Amendment 2 Highlights
The following table includes the Mantis issues resolved with this revision.
	Mantis ID
	Summary
	Resolution

	
	
	

OPC Unified Architecture, Amendment X	vi	Draft 1.04

Draft 1.04	v	OPC Unified Architecture, Amendment X

OPC Unified Architecture Specification

AMENDMENT X: Extended TranslateBrowsePathsToNodeIds

Part 4 – Services
Add the following after 5.8.4. TranslateBrowsePathsToNodeIds:
5.8.5	ExtendedTranslateBrowsePathsToNodeIds	Comment by Volkmann, Frank (DF TI SR): Name is t.b.d.:
“QueryBrowsePathsForNodeIds”	Comment by David Levine: Suggest the name "TranslateBrowsePathsToNodeIdsEx" or something similar, so that alphabetical listings show them next to each other.
5.8.5.1	Description
This Service is used to request that the Server translates one or more browse paths to NodeIds. Each browse path is constructed of a starting Node and a RelativePath. The specified starting Node identifies the Node from which the RelativePath is based. The RelativePath contains a sequence of ReferenceTypes and query patterns.
A query pattern filters resulting nodes for each translate step. Like xpath predicates is it possible to use a second relative path to address another entity to decide whether the current node will be filtered out or not.	Comment by David Levine: Is this better than the Query service?
One purpose of this Service is to allow programming against type definitions. Since BrowseNames shall be unique in the context of type definitions, a Client may create a browse path that is valid for a type definition and use this path on instances of the type. For example, an ObjectType “Boiler” may have a “HeatSensor” Variable as InstanceDeclaration. A graphical element programmed against the “Boiler” may need to display the Value of the “HeatSensor”. If the graphical element would be called on “Boiler1”, an instance of “Boiler”, it would need to call this Service specifying the NodeId of “Boiler1” as starting Node and the BrowseName of the “HeatSensor” as browse path. The Service would return the NodeId of the “HeatSensor” of “Boiler1” and the graphical element could subscribe to its Value Attribute.	Comment by David Levine: It would be helpful to explain why the existing TBPTN does not handle your use case. What do you want this to accomplish that the existing service does not, or why not use the QueryService?	Comment by Rainer Schiekofer: See also Part 3 page 10 (Missing HierarchicalReference requirement): „A TypeDefinitionNode or an InstanceDeclaration shall never reference two Nodes having the same BrowseName using forward hierarchical References. Instances based on InstanceDeclarations shall always keep the same BrowseName as the InstanceDeclaration they are derived from.“	Comment by David Levine: Suggest moving this example to a different section. It is very detailed and it is not clear why the extended service is useful for this. IMO a higher level description of why this new service is helpful would be better.
If a Node has multiple targets with the same BrowseName, the Server shall return a list of NodeIds. However, since one of the main purposes of this Service is to support programming against type definitions, the NodeId of the Node based on the type definition of the starting Node is returned as the first NodeId in the list.
5.8.5.2	Parameters
Table 43 defines the parameters for the Service.
[bookmark: _Ref134958373][bookmark: _Toc496644096][bookmark: _Toc362383641][bookmark: _Toc293994461][bookmark: _Toc286599385][bookmark: _Toc202698971][bookmark: _Toc202694952][bookmark: _Toc200983437][bookmark: _Toc200980331][bookmark: _Toc200966621]Table 43 – TranslateBrowsePathsToNodeIds Service Parameters
	Name
	Type
	Description

	Request
	
	

		requestHeader
	RequestHeader
	Common request parameters (see 7.28 for RequestHeader definition).

		browsePaths []
	BrowsePath
	List of browse paths for which NodeIds are being requested. This structure is defined in-line with the following indented items.

			startingNode
	NodeId
	NodeId of the starting Node for the browse path.

			relativePath
	ExtendedRelativePath
	The path to follow from the startingNode.
The last element in the extendedRelativePath shall always have a targetName specified. This further restricts the definition of the RelativePath type. The Server shall return Bad_BrowseNameInvalid if the targetName is missing.
The extendedRelativePath structure is defined in 7.27.

	
	
	

	Response
	
	

		responseHeader
	ResponseHeader
	Common response parameters (see 7.29 for ResponseHeader definition).

		results []
	BrowsePathResult
	List of results for the list of browse paths. The size and order of the list matches the size and order of the browsePaths request parameter. This structure is defined in-line with the following indented items.

			statusCode
	StatusCode
	StatusCode for the browse path (see 7.34 for StatusCode definition).

			targets []
	BrowsePathTarget

	List of targets for the relativePath from the startingNode. This structure is defined in-line with the following indented items.
A Server may encounter a Reference to a Node in another Server which it cannot follow while it is processing the RelativePath. If this happens the Server returns the NodeId of the external Node and sets the remainingPathIndex parameter to indicate which RelativePath elements still need to be processed. To complete the operation the Client shall connect to the other Server and call this service again using the target as the startingNode and the unprocessed elements as the relativePath.

				targetId
	ExpandedNodeId
	The identifier for a target of the RelativePath.

				remainingPathIndex
	Index
	The index of the first unprocessed element in the ExtendedRelativePath.
This value shall be equal to the maximum value of Index data type if all elements were processed (see 7.13 for Index definition).

		diagnosticInfos []
	DiagnosticInfo
	List of diagnostic information for the list of browse paths (see 7.8 for DiagnosticInfo definition). The size and order of the list matches the size and order of the browsePaths request parameter. This list is empty if diagnostics information was not requested in the request header or if no diagnostic information was encountered in processing of the request.

5.8.4.3	Service results
Table 41 defines the Service results specific to this Service. Common StatusCodes are defined in 7.34.
[bookmark: _Ref134958396][bookmark: _Toc496644097][bookmark: _Toc362383642][bookmark: _Toc293994462][bookmark: _Toc286599386][bookmark: _Toc202698972][bookmark: _Toc202694953][bookmark: _Toc200983438][bookmark: _Toc200980332][bookmark: _Toc200966622]Table 41 – TranslateBrowsePathsToNodeIds Service Result Codes
	Symbolic Id
	Description

	Bad_NothingToDo
	See Table 177 for the description of this result code.

	Bad_TooManyOperations
	See Table 177 for the description of this result code.

5.8.4.4	StatusCodes
Table 42 defines values for the operation level statusCode parameters that are specific to this Service. Common StatusCodes are defined in Table 178.
[bookmark: _Ref134418324][bookmark: _Toc496644098][bookmark: _Toc362383643][bookmark: _Toc293994463][bookmark: _Toc286599387][bookmark: _Toc202698973][bookmark: _Toc202694954][bookmark: _Toc200983439][bookmark: _Toc200980333][bookmark: _Toc200966623]Table 42 – TranslateBrowsePathsToNodeIds Operation Level Result Codes
	Symbolic Id
	Description

	Bad_NodeIdInvalid
	See Table 178 for the description of this result code.

	Bad_NodeIdUnknown
	See Table 178 for the description of this result code.

	Bad_NothingToDo
	See Table 177 for the description of this result code.
This code indicates that the relativePath contained an empty list.

	Bad_BrowseNameInvalid	Comment by David Levine: Is this an error, or should this return good quality with 0 results? If it is an error, it would be extremely helpful if the missing TargetName is identified to the Client. Otherwise it has to guess which component is wrong.
	See Table 178 for the description of this result code.
This code indicates that a TargetName was missing in a RelativePath.

	Uncertain_ReferenceOutOfServer
	The path element has targets which are in another server.

	Bad_TooManyMatches	Comment by David Levine: The client has no way of knowing in advance how many results there will be, therefore it has no way to recover or otherwise compensate for this error. This will lead to support calls, difficult to diagnose failures, and customer frustration.

There should be a Server capability Node that defines how many results there can be in a single reply.

There should be provision for continuation points so that large result sets can be streamed to the client.
	The requested operation has too many matches to return.
Users should use queries for large result sets. Servers should allow at least 10 matches before returning this error code.

	Bad_QueryTooComplex
	The requested operation requires too many resources in the server.	Comment by David Levine: Is this a standard error code or a new one? If it is new, suggest renaming it to "Bad_InsufficientResources" or "OutOfMemory", because "QueryTooComplex" could mean many other things, e.g. it can only handle one logical operation.

	Bad_NoMatch
	The requested relativePath cannot be resolved to a target to return.	Comment by David Levine: Isn't it legal to return 0 results? How is this different?

Add the following as 7.27. ExtendedRelativePath:

7.27 ExtendedRelativePath
The components of this parameter are defined in Table 169.
Table 169 – ExtendedRelativePath
	Name
	[image: page164image5853696]Type[image: page164image5856400][image: page164image5856608]
	Description

	ExtendedRelativePath
	structure
	Defines a sequence of References and BrowseNames to follow.

	 elements []
	ExtendedRelativePath Element
	A sequence of References and query patterns to follow. This structure is defined in-line with the following indented items.
Each element in the sequence is processed by finding the targets and then using those targets as the starting nodes for the next element. The targets of the final element are the target of the ExtendedRelativePath.

	 referenceTypeId
	NodeId
	The type of reference to follow from the current node.
The current path cannot be followed any further if the referenceTypeId is not available on the Node instance.
If not specified then all References are included and the parameter includeSubtypes is ignored.

	 isInverse
	Boolean
	Only inverse references shall be followed if this value is TRUE. Only forward references shall be followed if this value is FALSE.

	 includeSubtypes
	Boolean
	Indicates whether subtypes of the ReferenceType should be followed. Subtypes are included if this value is TRUE.

	 bBrowseNamePattern	Comment by Rainer Schiekofer: LowerCase for structure field elements.
	QualifiedName
	Browsename included with wildcards “*”, “?”. & is escape character:	Comment by Rainer Schiekofer: See also OPC UA Part 4 Table 121 Wildcard characters. If you do not want to use standard regular expressions any longer…
‘*’: Zero, or more characters
‘?’: One character
‘&’ escape character

	 pPredicates[]	Comment by Rainer Schiekofer: Is this a part of the elements[] array or not? However, you have a similar structure than OPC UA Query: with elements ~ dataToReturn AND prediactes ~ Filter.	Comment by Frank Volkmann: Yes it is
	PredicatePathStep
	Predicates path starting from the current target node, See 7.28

An ExtendedRelativePath can be applied to any starting Node. The targets of the ExtendedRelativePath are the set of Nodes that are found by sequentially following the elements in ExtendedRelativePath. 	Comment by David Levine: This implies more than programming against types.
The PredicatePath for a current target node is a filter that decides whether this current node will be removed or remain in the set of target nodes for the next translate step.
The PredicatePath is an array of PredicateSteps (predicates[]).
A text format for the ExtendedRelativePath can be found in Clause A.2. This format is used in examples that explain the Services that make use of the ExtendedRelativePath structure.
Samples for BrowseNamePattern:
	Boiler
	All TargetNodes with the BrowseName Boiler

	
	All TargetNodes with the BrowseName Boiler

	Boiler*
	All TargetNodes with the BrowseName starting with Boiler

	Bo?ler
	All strings that Starts with “Bo” followed by one character and than ends with ”ler”.

	Bo&?ler
	Bo?ler

	Bo&&ler
	Bo&ler

7.28 PredicatePathStep	Comment by Rainer Schiekofer: Use OPC UA style.
Each PredicateStep contains a processing instruction and additional parameters depending on the processing instruction. In difference to the RelativePath the each PredicateStep should result in zero or one target nodes.	Comment by Volkmann, Frank (DF TI SR): To be discussed:
If there is more than one result, is that a failure or is the first match used for further processing?	Comment by Rainer Schiekofer: The goal of TBPTN is normally to find the NodeId which is based on the TypeDefinition (exactly one result). However, the goal of OPC UA Query is different, because returning more than one result is also a valid use case. So the question is why you want to ensure that the filter has at max one hit (this is not the case in most other query languages)? Consider the filter of OPC UA Part 4 Annex B Example 2 “where a person has a child” -> A person with 2 childs is also possible but is not permitted by your statement…	Comment by David Levine: It is not clear what does the phrase "In difference to" means.	Comment by David Levine: Why is more than one target node not allowed or considered to be an error?
Possible Processing instructions are:
	Name
	[image: page164image5854112]Parameter
	Description

	Follow 	Comment by Rainer Schiekofer: See also OPC UA Query „RelatedTo“ Operator.
	Reference
	Follow a reference for the next step

	And
	None
	Split predicate path to a left and right side and combine the results using a logical and:
Store the current result, compute the next steps until an And or Or instruction or the end is reached. Than compute an logical and on both results.

	Or
	None
	Split predicate path to a left and right side and combine the results using a logical or:
Store the current result, compute the next steps until an Or instruction or the end is reached. Than compute an logical or on both results.

	BracketStart
	None
	Call a new predicate Path procession beginning with the next predicate path step. (this call recursive the predicate path processing)

	BracketEnd
	None
	End the current predicate path processing, calculate the result and return this as processing result to the caller.

	Expression
	Expression
	Attribute Comparative Operator Regular Expression or Number

The components of the PredicatePathSetp PredicatePathStep are defined in Table 170.
0.1 U MonitoringMode	Comment by Rainer Schiekofer: Use OPC UA enum extended style (PredicatePathStep)	Comment by David Levine: Is this the wrong table?
The MonitoringMode is an enumeration that specifies whether sampling and reporting are enabled or disabled for a MonitoredItem. The value of the publishing enabled parameter for a Subscription does not affect the value of the monitoring mode for a MonitoredItem of the Subscription. The values of this parameter are defined in Table 146.
[bookmark: _Ref104716199][bookmark: _Toc200966721][bookmark: _Toc200980431][bookmark: _Toc200983537][bookmark: _Toc202695052][bookmark: _Toc202699071][bookmark: _Toc286599485][bookmark: _Toc293994561][bookmark: _Toc362383741][bookmark: _Toc474399809][bookmark: _Toc425086471]Table 146 – MonitoringMode Values
	Value
	Description

	DISABLED_0
	The item being monitored is not sampled or evaluated, and Notifications are not generated or queued. Notification reporting is disabled.

	SAMPLING_1
	The item being monitored is sampled and evaluated, and Notifications are generated and queued. Notification reporting is disabled.

	REPORTING_2
	The item being monitored is sampled and evaluated, and Notifications are generated and queued. Notification reporting is enabled.

Table 170 – PredicatePathStep 	Comment by Rainer Schiekofer: General comment: Maybe take a look at ContentFilter definition of OPC UA Query. It should be possible to structure the Filter part in a similar way. -> Of course you have to make some restrictions on the Operators and Operands to keep the service “simple” enough.
	Name
	[image: page164image5853696][image: page164image5854112]Type[image: page164image5856400][image: page164image5856608]
	Description

	Processing Instruction
	enum
	An enumeration that specifies the processing instruction for this predicate step. It has the following values:
	FOLLOW_0		Follow the reference.	Comment by Rainer Schiekofer: Use OPC UA enum extended style if you want to add a larger description…
	AND_1			logical and
	OR_2			logical or
	BRACKET_START_3	Start a subprocessing
	BRACKET_END_4		End of subprocessing
	EXPRESSION_5		Compute expression

	referenceTypeId
	NodeId
	Direction to follow beginning from the current target node or the result of the last step. Used for Processing instruction FOLLOW_0.

	isInverse
	Boolean
	Only inverse references shall be followed if this value is TRUE. Only forward references shall be followed if this value is FALSE. . Used for Processing instruction FOLLOW_0.

	includeSubtypes
	Boolean
	Indicates whether subtypes of the ReferenceType should be followed. Subtypes are included if this value is TRUE. . Used for Processing instruction FOLLOW_0.

	AttributeId
	UInt32
	Attribute of the current predicate node to compare. (for attribute ids of Attributes, see Part 6) . Used for Processing instruction EXPRESSION_5.

	Comparator
	enum
	An enumeration that specifies the processing instruction for this predicate step. It has the following values:
	LESS_THAN_0		“<”, for Numbers only
	GREATER_THAN_1	“>”, for Numbers only	LESS_OR_EQUAL_2	“<=”, for Numbers only	GREATER_OR_EQUAL_3	“>=”, for Numbers only	EQUAL_4		“=”
	NOT_EQUAL_5		“!=”
Used for Processing instruction EXPRESSION_5.

	RegularExpression
	String
	Regular expression that is operated on the attribute value. Used for Processing instruction EXPRESSION_5.

	Number
	Number
	Number the attribute value copmpared to. Used for Processing instruction EXPRESSION_5.

Remarks:
Whether the attribute is compared to a regular expression or a number depends on the type of the attribute. Attributes of type string are computed using a regular expression. Attributes of type Number are computed using a number.
If the type of the attribute don’t match the comparator or the “right side” an error is returned.
Exchange the following as A.2. RelativePath:
BNF of ExtendedRelativePath
A ExtendedRelativePath is a structure that describes a sequence of References and Nodes to follow. This annex describes a text format for a RelativePath that can be used in documentation or in files used to store configuration information.
The components of an ExtendedRelativePath text format are specified in Table A.1.
Table A.1 – ExtendedRelativePath
	Symbol 	Comment by Frank Volkmann [2]: ToDo: Need to get the table from the word document, copied from the pdf failed.
	Meaning

	/
	The forward slash character indicates that the Server is to follow any subtype of HierarchicalReferences.

	.
	The period (dot) character indicates that the Server is to follow any subtype of a Aggregates ReferenceType.

	<[#!ns:]ReferenceType> 	Comment by Frank Volkmann [2]: I would like to use the pattern mechanism also on references, to be discussed.	Comment by Rainer Schiekofer: Why? ;-); Nevertheless, Part 3 5.3.2 will support you with unique BrowseNames ;-).
	A string delimited by the ‘<’ and ‘>’ symbols specifies the BrowseName of a ReferenceType to follow. By default, any References of the subtypes the ReferenceType are followed as well. A ‘#’ placed in front of the BrowseName indicates that subtypes should not be followed. 	Comment by Frank Volkmann [3]: Here we could allow simple regexp to expand Reference types to be discussed
A ‘!’ in front of the BrowseName is used to indicate that the inverse Reference should be followed. The BrowseName may be qualified with a namespace index (indicated by a numeric prefix followed by a colon). This namespace index is used specify the namespace component of the BrowseName for the ReferenceType. If the namespace prefix is omitted then namespace index 0 is used.

	[ns:]BrowsePattern‘[‘PredicatePath‘]‘
	A string that follows a ‘/’, ‘.’ or ‘>’ symbol specifies the pattern of a BrowseName of a target Node to return or follow. This BrowsePattern may be prefixed by its namespace index. If the namespace prefix is omitted then namespace index 0 is used.
The BrowsePattern can be followed by a PredicatePath in brackets “[“,”]”. A PredicatePath can filter the set of target nodes.
Omitting the final BrowsePattern and PredicatePath from a path is equivalent to a wildcard operation that matches all Nodes which are the target of the Reference specified by the path.
Syntax of the pattern is defined in 7.27. Syntax of the PredicatePath is defined in A.2

	&
	The & sign character is the escape character. It is used to specify reserved characters that appear within a pattern. A reserved character is escaped by inserting the ‘&’ in front of it. Examples of patterns with escaped characters are:
Received browse path name “&/Name_1”
“&.Name_2”
“&:Name_3”
“&&Name_4”
“&”Name_5”
Resolves to “/Name_1” “.Name_2” “:Name_3” “&Name_4” “”Name_5”

Table A.2 provides RelativePaths examples in text format.
OPC Unified Architecture, Part 4 163 Release 1.04
Table A.2 – BNF of PredicatesPath
	Symbol
	Meaning

	PredicatePath
	PredicatePathStep |
PredicatePathStep PredicatePath

	PredicatePathStep
	Reference |
Expression

	Reference
	<[#!ns:]ReferenceType>

	Expression
	AttributeName Comparator RegularExpression |
AttributeName Comparator Number

	AttributeName
	‚@‘ String
String ist the name oft he attribute to use

	Comparator
	‚<‘,‘>‘,‘<=‘,‘>=‘,‘=‘,‘!=‘

	Regular Expression
	‚“‘ Regular Expression ‚“‘
ToDo find reference to standardization body for regular expressions. https://en.wikipedia.org/wiki/Regular_expression
The regular expression has to be wrapped in quotes (“).

	Number
	A floating point value, see part 6	Comment by Rainer Schiekofer: Double or Float? If you do not want to specify it here, why you do not use a more abstract type like Number?

	<[#!ns:]ReferenceType>
	A string delimited by the ‘<’ and ‘>’ symbols specifies the BrowseName of a ReferenceType to follow. By default, any References of the subtypes the ReferenceType are followed as well. A ‘#’ placed in front of the BrowseName indicates that subtypes should not be followed.
A ‘!’ in front of the BrowseName is used to indicate that the inverse Reference should be followed. The BrowseName may be qualified with a namespace index (indicated by a numeric prefix followed by a colon). This namespace index is used specify the namespace component of the BrowseName for the ReferenceType. If the namespace prefix is omitted then namespace index 0 is used.

	&
	The & sign character is the escape character. It is used to specify reserved characters that appear within a pattern. A reserved character is escaped by inserting the ‘&’ in front of it. Examples of patterns with escaped characters are:
Received browse path name “&/Name_1”
“&.Name_2”
“&:Name_3”
“&&Name_4”
“&”Name_5”
Resolves to “/Name_1” “.Name_2” “:Name_3” “&Name_4” “”Name_5”

Table A.3 – ExctendedRelativePath Examples
	Browse Path
	Description

	“/2:Block&.Output”
	Follows any forward hierarchical Reference with target BrowseName = “2:Block.Output”.

	“/3:Truck.0:Node*”
	Follows any forward hierarchical Reference with target BrowseName = “3:Truck” and from there a forward Aggregates Reference to a target with any BrowseName beginning with “0:Node”.

	“<1:ConnectedTo>1:Boil*/1:HeatSensor”
	Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds targets with BrowseName beginning with Boild in namespaceindex 1. From there follows any hierarchical Reference and find targets with BrowseName = ‘1:HeatSensor’.

	“<0:HasChild>2:Wheel”
	Follows any forward Reference with a BrowseName = ‘HasChild’ and qualified with the default OPC UA namespace. Then find targets with BrowseName = ‘Wheel’ qualified with namespace index ‘2’.

	“<!HasChild>Truck”
	Follows any inverse Reference with a BrowseName = ‘HasChild’. Then find targets with BrowseName = ‘Truck’. In both cases, the namespace component of the BrowseName is assumed to be 0.

	“<1:ConnectedTo>1:Boiler*[<1:hasFixatation>
1:MountMode@value=”Screwed”]/
1:CurrentTemperature”
	Follows any forward Reference with a BrowseName = ‘1:ConnectedTo’ and finds targets with BrowseName begins with ‘1:Boiler’. All found targets filtered for having a forward reference with BrowseName = ‘1:hasFixatation’ that point to a node with the BrowseName = ‘1:MountMode and the value attribute = “Sscrewed”. From the resulting nodes it finds all targets of hierarchical References which have the BrowseName = ‘1:CurrentTemperature’

	“<!hasTypeDefinition>[<1:MountedTo>	Comment by Volkmann, Frank (DF TI SR): Need a better sample here
<1:hasFixatation>1:Fixatation@value=”Screwed”]”
	Follows any reverse Reference with a BrowseName = ‘hasTypeDefinition’. All found targets filtered for having a forward reference with BrowseName = ‘1:MountedTo’ that point to a node having a forward reference with the BrowseName = ‘1:hasFixatation’ that point to a node with the BrowseName = ‘1:Fixxatation’ and the value attribute = “Sscrewed”.

This ExtendedRelativePath returns all instances of the starting Typedefinition Node which have a MountedTo Reference, and that targets have a hasFixatation reference with a Fixatation node and the value Screwed.

	“<0:HasChild>”
[image: page183image37244624]
	Finds all targets of forward References with a BrowseName = ‘HasChild’ and qualified with the default OPC UA namespace.

The following BNF describes the syntax of the ExtendedRelativePath text format.
<relative-path> ::= [<reference-type>] [<browse-name>] [<predicates-path>] [relative-path] [footnoteRef:1] [1: All elements of the <relative-path> are optional, but it hast o contain at least one optional element]

<reference-type> ::= '/' | '.' | '<' ['#'] ['!'] <browse-name> '>'
<browse-name> ::= [<namespace-index> ':'] <name>
<namespace-index> ::= <digit> [<digit>]
<digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
<name> ::= (<name-char> | '&' <reserved-char> | '.' | '*') [<name>]
<predicates-path> ::= '[' <predicates-step> ']'
<predicates-step> ::= [<reference-type>] [<expression>] [<predicates-step>]
<expression> ::= '@' <name> <comparator> <regular-expression-string> | <Number>
<comparator> ::= '<' | '>' |'<=' | '>=' |'!=' | '='
<Number> ::= ['+' | '-'] [<digit-sequence>] [.] [<digit-sequence>]
<digit-sequence> ::= <digit> [<digit-sequence>]
<regular-expression-string> ::= '”' < regular-expression > '”'
<regular-expression> ::= t.b.d. from Regexp definition
<reserved-char> ::= '/' | '.' | '<' | '>' | ':' | '#' | '!' | '&'| '*'
| '['| ']'
<name-char> ::= All valid characters for a String (see Part 3) excluding reserved-chars.

image1.wmf

F

O

U

N

D

A

T

I

O

N

®

oleObject1.bin

F O U N D A T I O N

®

image2.png

